Evaluating Model Robustness for Defect Identification and Classification in a Composite Aerostructure Material

Author:

Yunker Austin1,Lake Rami22,Kettimuthu Rajkumar1,Kral Zachary34

Affiliation:

1. Argonne National Laboratory Data Science and Learning Division, , Lemont, IL 606439

2. Northern Illinois University Department of Computer Science, , Dekalb, IL 60115

3. Spirit AeroSystems (United States) , Wichita, KS 67210

4. Spirit AeroSystems , Wichita, KS 67210

Abstract

Abstract Aircraft structures are required to have a high level of quality to satisfy their need for light weight, efficient flight, and withstanding high loads over their lifespan. These aerostructures are typically made from a composite material due to their good tensile strength and resistance to compression. To ensure their structural integrity, the composite material requires inspection for common flaws such as porosity, delaminations, voids, foreign object debris, and other defects. Ultrasonic testing (UT) is a popular non-destructive inspection (NDI) technique used for effectively evaluating the composite material. Current inspection methods rely heavily on human experience and are extremely time consuming. Therefore, there is a need for the development of techniques to reduce the manual inspection time. This work compares the performance of different deep learning-based methods in the identification and classification of defects. Deep learning has shown great promise in numerous fields, and we show its effectiveness in the evaluation of the composite aerostructure material. The methods developed here are both highly reliable with a top recall value of 98.64% as well as extremely efficient requiring an average of 4 s during the inferencing stage to evaluate new composites. Finally, we investigate model robustness to concept drift by measuring its performance over time.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3