A Stand-Alone Hybrid Photovoltaic, Fuel Cell and Battery System

Author:

Qandil Mohammad D.1,Amano Ryoichi S.1,Abbas Ahmad I.1

Affiliation:

1. University of Wisconsin Milwaukee, Milwaukee, WI

Abstract

The main purpose of this study is to investigate the feasibility of using a hybrid photovoltaic (PV), fuel cell (FC) and battery system to power different load cases, which are intended to be used at Al-Zarqa governorate in Jordan. All aspects related to the potentials of solar energy in Al-Hashemeya area were studied. The irradiation levels were carefully identified and analyzed, and found to range between 4.1–7.6 kWh/m2/day; these values represented an excellent opportunity for the photovoltaic solar system. Various renewable and non-renewable energy sources, energy storage methods and their applicability regarding cost and performance are discussed, in which HOMER (Hybrid Optimization for Electric Renewable) software is used as a sizing and optimization tool. Different scenarios with Photovoltaic slope, diesel price, and fuel cell cost were done. A remote residential building, school and factory having an energy consumption of 31 kWh/day with a peak of 5.3 kW, 529 kWh/day with a maximum of 123 kW and 608 kWh/day with a maximum of 67 kW respectively, were considered as the case studies’ loads. It was found that the PV-diesel generator system with battery is the most suitable solution at present for the residential building case, while the PV-FC-diesel generator-electrolyzer hybrid system with battery suites best both the school and factory cases. The load profile for each case was found to have a substantial effect on how the system’s power produced a scheme. For the residential building, PV panels contributed by about 75% of the total power production, the contribution increased for the school case study to 96% and dropped for the factory case to almost 50%.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrification of Offshore Platforms to Reduce Carbon Footprint and Achieve Lower Operational Expenses: A Feasibility Study;Day 1 Tue, October 24, 2023;2023-10-17

2. Optimal Cost and Component Configuration Analysis of Micro-grid Using GWO Algorithm;2023 International Conference on Electrical, Computer and Communication Engineering (ECCE);2023-02-23

3. Automatic Control of Hybrid Solar Cell and Diesel Power Distribution System;2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST);2022-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3