Dynamic Modeling and Stability Analysis of Flat Belt Drives Using an Elastic/Perfectly Plastic Friction Law

Author:

Kim Dooroo1,Leamy Michael J.1,Ferri Aldo A.1

Affiliation:

1. Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

This paper presents an analysis of a nonlinear (piecewise linear) dynamical model governing steady operation of a flat belt drive using a physically motivated elastic/perfectly plastic (EPP) friction law. The EPP law models frictional contact as an elastic spring in series with an ideal Coulomb damper. As such, the friction magnitude depends on the stretch of the elastic belt and is integral to the solution approach. Application of the extended Hamilton’s principle, accounting for nonconservative work due to friction and mass transport at the boundaries, yields a set of piecewise linear equations of motion and accompanying boundary conditions. Equilibrium solutions to the gyroscopic boundary value problem are determined in closed form together with an expression for the minimum value of the EPP spring constant needed to transmit a given torque. Unlike equilibrium solutions obtained from a strict Coulomb law, these solutions omit adhesion zones. This finding may be important for interpreting belt drive test-stand results and the experimentally determined friction coefficients obtained from them. A local stability analysis demonstrates that the nonlinear equilibrium solutions found are stable to local perturbations. The steady dynamical operation of the drive is also studied using an in-house corotational finite element code. Comparisons of the finite-element solutions with those obtained analytically show excellent agreement.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3