Noninvasive In Vivo Determination of Residual Strains and Stresses

Author:

Donmazov Samir1,Piskin Senol1,Pekkan Kerem23

Affiliation:

1. Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey

2. Associate Professor Department of Mechanical Engineering, Koç University, Rumelifeneri Kampüsü, Sariyer, Istanbul 34450, Turkey;

3. Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15219 e-mail:

Abstract

Vascular growth and remodeling during embryonic development are associated with blood flow and pressure induced stress distribution, in which residual strains and stresses play a central role. Residual strains are typically measured by performing in vitro tests on the excised vascular tissue. In this paper, we investigated the possibility of estimating residual strains and stresses using physiological pressure–radius data obtained through in vivo noninvasive measurement techniques, such as optical coherence tomography or ultrasound modalities. This analytical approach first tested with in vitro results using experimental data sets for three different arteries such as rabbit carotid artery, rabbit thoracic artery, and human carotid artery based on Fung’s pseudostrain energy function and Delfino’s exponential strain energy function (SEF). We also examined residual strains and stresses in the human swine iliac artery using the in vivo experimental ultrasound data sets corresponding to the systolic-to-diastolic region only. This allowed computation of the in vivo residual stress information for loading and unloading states separately. Residual strain parameters as well as the material parameters were successfully computed with high accuracy, where the relative errors are introduced in the range of 0–7.5%. Corresponding residual stress distributions demonstrated global errors all in acceptable ranges. A slight discrepancy was observed in the computed reduced axial force. Results of computations performed based on in vivo experimental data obtained from loading and unloading states of the artery exhibited alterations in material properties and residual strain parameters as well. Emerging noninvasive measurement techniques combined with the present analytical approach can be used to estimate residual strains and stresses in vascular tissues as a precursor for growth estimates. This approach is also validated with a finite element model of a general two-layered artery, where the material remodeling states and residual strain generation are investigated.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference42 articles.

1. What Are the Residual Stresses Doing in Our Blood Vessels?;Ann. Biomed. Eng.,1991

2. Relation Between Zero-Stress State and Branching Order of Porcine Left Coronary Arterial Tree;Am. J. Physiol.,1998

3. The Influence of Residual Stress on Finite Deformation Elastic Response;Int. J. Non-Linear Mech.,2013

4. Residual Strains in Conduit Arteries;J. Biomech.,2003

5. Residual Stress Measurement in PVD Optical Coatings by Microtopography;Measurement,2011

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3