Measured Leakage and Rotordynamic Force Coefficients for Two Liquid Annular Seal Configurations: Smooth-Rotor/Grooved-Stator Versus Grooved-Rotor/Smooth-Stator

Author:

W. Childs Dara1,Yang Jing1,San Andrés Luis1,M. Torres Rueda Jose2,Alex Moreland James3

Affiliation:

1. J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University , College Station, TX 77843

2. Energy Recovery, Inc. , Katy, TX 77024

3. Lynntech, Inc. , College Station, TX 77845

Abstract

Abstract This paper reports and compares the experimental results of leakage and dynamic force coefficients for two liquid annular pressure seals, one having a smooth-rotor/circumferentially grooved stator (SR/GS), the other one with a circumferentially grooved rotor/smooth-stator (GR/SS). Differing only in the grooves’ location, the GR/SS seal’s geometry and operating conditions are representative of those in electrical submersible pumps (ESPs) used for oil recovery. Supplied with an ISO VG2 oil at 46 °C, both seals have the same diameter D = 102 mm, length-to-diameter ratio L/D = 0.5, and nominal land clearance Cr = 0.203 mm. The seals have 15 circumferential grooves with grooves and land lengths equal to 1.52 mm. Test variable ranges include (a) shaft speeds (ω) ranging from 2 to 8 krpm (shaft surface speed ∼ 43 m/s), and (b) pressure differences (ΔP) from 2 to 8 bar. Upstream of the test seals, three separate prerotation rings generate a range of inlet circumferential velocities (entrance swirl). Under all conditions, the GR/SS seal leaks about 10% less than the SR/GS seal. For both seals, the direct stiffnesses (KXX, KYY) have low magnitudes that drop with increasing ω; in some cases, they turn negative at 6 krpm. The GR/SS seal produces cross-coupled stiffnesses (KXY, KYX) that are ∼1.5 times larger than those for the SR/GS seal. Under the same conditions, the SR/GS seal is more stabilizing as its direct damping, and added mass coefficients are ∼ 20% larger than those for the GR/SS seal. Instability issues are likely to arise with either seal geometry because negative KXX and KYY drop a pump critical speed, aggravating the well-known destabilizing coefficients KXY and KYX. The whirl frequency ratio (WFR) combines the effects of the cross-coupled stiffness, direct damping and cross-coupled mass terms, thus providing a good basis for comparing two seals’ stability characteristics. Overall, the WFR magnitudes for the GR/SS seal are about three times higher than those for the SR/GS seal. Note that, irrespective of the inlet swirl condition, the GR/SS approaches a WFR ∼ 0.50 for operating shaft speeds greater than 4 krpm. At the lowest shaft speed (2 krpm), the WFR ≪ 0.5 for the low inlet preswirl ring, whereas WFR > 0.8 for the medium and high preswirl rings. For the SR/GS seal, the WFR ∼ 0.2 at the highest shaft speed of 6 krpm, and not affected by the inlet preswirl condition. On the other hand, at the lowest shaft speed, the WFR ranges from 0.5 to 0.75 for the SR/GS seal with medium and high preswirl rings. At this speed, the WFR = 0 with the low inlet preswirl ring. Hence, to enhance the operational stability, an effective swirl brake that could drop the inlet preswirl ratio upstream of a seal is helpful for the GR/SS seal out to 4 krpm and for the SR/GS seal out to 6 krpm.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference24 articles.

1. Calculation of the Critical Number of Revolutions and Conditions Necessary for Dynamic Stability of Rotors in High-Pressure Hydraulic Machines When Taking Into Account Forces Originating in Sealings;J. Power Mech. Eng.,1958

2. A Lateral Rotordynamics Primer on Electric Submersible Pumps (ESPs) for Deep Subsea Applications,2014

3. Subsynchronous Vibration Problems in High-Speed Multistage Centrifugal Pumps,1985

4. Centrifugal Pump Vibration Caused by Supersynchronous Shaft Instability,1996

5. Comparison of Rotordynamic Fluid Forces Between Closed Impeller and Open Impeller,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3