Plate Diffuser Performance in Spherical Tank Thermocline Storage System

Author:

Khan Fahad1,Savilonis Brian J.1

Affiliation:

1. Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 e-mail:

Abstract

Thermal energy storage (TES) systems that store sensible heat in liquid media require the use of storage tanks. Spherical tanks require less building material and insulation, which might reduce the overall cost of a TES system while providing structural rigidity. The current study investigates an optimized plate diffuser in a thermocline spherical tank storage system to possibly increase the discharge flow rate without disrupting the thermocline region and without reducing the tank thermal efficiency. For low temperature (10–90 °C heat storage applications), such as heating, ventilation, and air conditioning (HVAC) and thermal water desalination, storing hot water in a thermocline system can increase the system thermal efficiency by up to 40% when compared to a fully mixed water tank and reduce the installation cost by 30% compared to a two-tank system. This study examines using a spherical tank in a thermocline system for such applications. A computational fluid dynamic (CFD) study simulated the discharge process from a spherical storage tank thermocline water system. Thermocline thickness and temperature profile in the tank were numerically determined for Reynolds number, Re = 600 and Froude number, Fr = 1.2; results were then experimentally validated. A CFD parametric study with (500 < Re < 7500) and (0.5 < Fr < 3.3): (i) determined the influence of tank flow dimensionless numbers (Reynolds, Froude, Richardson, and Archimedes) on thermal efficiency and thermocline thickness, (ii) produced an equation to predict the tank thermal efficiency using flow dimensionless numbers, and (iii) estimated the thermocline region volume occupation as a percentage of the total volume. The study of an optimized plate diffuser produced an equation for thermal efficiency based on Re and Fr numbers and estimated a thermocline volume equal to 15% of total tank volume. Flow rate ramp up by a factor of 3 was possible after the thermocline region was formed without losing tank thermal efficiency.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference21 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3