Impact of copper and its nanoparticles on growth, ultrastructure, and laccase production of Aspergillus niger using corn cobs wastes

Author:

Abdel Ghany Tarek M.1,Bakri Marwah M.2,Al-Rajhi Aisha M. H.3,Al Abboud Mohamed A.2,Alawlaqi M. M.2,Shater Abdel Rhaman M.4

Affiliation:

1. Al-Azhar University

2. Jazan University

3. Princess Nora Bent Abdularahman University

4. Thamar University

Abstract

The influence of copper and its nanoparticles was studied relative to growth and ultrastructure of Aspergillus niger. Laccase production by A. niger using corn cobs as substrate at different concentrations of CuSO4 and copper nanoparticles (CuNPs) is reported. Fungus growth was induced at 100 ppm of CuNPs and CuSO4, while at 300 ppm, the growth inhibition was 65.6% and 86.9%, respectively. Fungus sporulation was reduced to 30.4% and 47.6% at 300 ppm of CuNPs and CuSO4, respectively, compared to the control (100%). Transmission electron microscopy revealed that CuSO4 and CuNPs treatments encouraged the deformed appearance of the fungus at 200 ppm and 300 ppm, particularly CuNPs. The CuNPs and CuSO4 induced laccase production at 1.67 U/mL and 1.51 U/mL at optimum concentrations 0.15 mM and 0.25 mM, respectively. The optimum concentrations of CuNPs and CuSO4 led to reduced incubation periods of 12 d and 14 d, respectively, required to produce the highest amount of laccase (1.66 U/mL and 1.53 U/mL), while without treatments, the incubation period increased to 16 d required for the highest amount of laccase production (1.36 U/mL). Induction of laccase production at acidic pH and at 30 °C was recorded with the addition of CuSO4 and CuNPs, while its effects were slight at pH above 6.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3