Variability in antimicrobial chemical defenses in the Caribbean sponge Agelas tubulata: implications for disease resistance and resilience

Author:

Clayshulte Abraham A1,Gochfeld DJ12,Avula B2,Macartney KJ3,Lesser MP3,Slattery M14

Affiliation:

1. Department of Biomolecular Sciences, Division of Environmental Toxicology, University of Mississippi, University, MS 38677, USA

2. National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA

3. Department of Molecular, Cellular and Biomedical Sciences and School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, NH 03824, USA

4. Department of Biomolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS 38677, USA

Abstract

Sponges in the genus Agelas produce a diversity of bromopyrrole alkaloid secondary metabolites, some of which are known to inhibit predators and pathogens. Selective pressures on sponges to produce chemical defenses vary in time and space, often resulting in differences in the production of secondary metabolites. To characterize intraspecific variation in these compounds, we generated metabolomic profiles of the Caribbean sponge A. tubulata across spatial gradients, including multiple sites in Belize and Grand Cayman, and depths ranging from 15 to 61 m in Grand Cayman. Samples were also analyzed from a reciprocal transplant experiment across shallow (22 m) to mesophotic (61 m) reefs. We found quantitative, but not qualitative, differences in metabolite profiles across sites and depths, with 9 metabolites contributing to that variation. In addition, transplanting sponges across depths resulted in significant changes in concentrations of the metabolite sceptrin. Sponge extracts exhibited antibacterial activity against a panel of marine and human pathogens. Multiple regression analyses showed that different metabolites were associated with antibacterial activity against different pathogens. The strongest compound-specific relationship was a negative effect of oroidin on the growth of Serratia marcescens, and purified oroidin was found to inhibit S. marcescens growth in a dose-dependent manner. Overall, A. tubulata exhibits intraspecific variability in the production of antibacterial secondary metabolites across sites and depths that signals selective responses to its environment. Given the current increase in sponge densities, and incidence of disease on coral reefs, these data have implications for disease resistance and resilience of sponges in the Anthropocene.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3