Salinity gradient differentiates potential novel ecotypes and diversity of Labyrinthulomycetes protists along the Haihe River, northern China

Author:

Bai M12,Li J1,Ding X1,Liu X1,He Y13,Wang G145

Affiliation:

1. Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China

2. Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, PR China

3. School of Fishery, Zhejiang Ocean University, Zhoushan 316022, PR China

4. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China

5. Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China

Abstract

With a ubiquitous presence in marine ecosystems, Labyrinthulomycetes protists (LP) play critical ecological roles in oceanic habitats. Recently, some LP strains have been suggested to survive in low-salinity environments, but their distribution in freshwaters was largely unknown. This study investigated LP abundance and diversity dynamics along a fresh-saltwater gradient in 2 seasons. LP were detected in all samples. Although LP abundance in freshwaters (typically 104 to 105 copies l-1) was significantly lower than that in saline waters, their abundance still corresponded to that of previously reported LP in some coastal waters, suggesting their potentially essential roles in riverine ecosystems. High-throughput sequencing analyses identified 110, 54, and 146 LP amplicon sequence variants (ASVs) in fresh, brackish, and saline waters, respectively. Canonical correspondence analysis and variance partitioning analysis further indicated that salinity and temperature were the most significant environmental factors to affect LP community structure. Notably, most of the dominant ASVs in fresh/brackish waters were annotated to a rarely reported Labyrinthulida family, Amphitraemidae, and a newly identified river cluster of the order Thraustochytrida, which were significantly different from those of saline waters. Finally, the metabolic capabilities of the detected LP genera suggest that LP likely play diverse ecological roles in riverine ecosystems.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3