Assessing inorganic nitrogen transport in marine phytoplankton assemblages through the 15N-tracer technique and metatranscriptomics

Author:

Shih CY12,Chang KZ13,Wang PL4,Chang J356,Kang LK1236

Affiliation:

1. Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC

2. Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC

3. Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC

4. Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan, ROC

5. Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC

6. Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC

Abstract

The availability of inorganic nitrogen is considered one of the limiting factors for primary production in the ocean. However, different phytoplankton possess unique strategies to take up and assimilate nitrate and ammonium to cope with environmental changes. To investigate the nitrogen uptake characteristics of different size-fractionated phytoplankton in natural assemblages, 3 research cruises were conducted in the southern East China Sea in 2018 and 2019. The nitrogen uptake characteristics of 2 size-fractionated natural assemblages, microphytoplankton (20-200 µm) and pico-nanophytoplankton (<20 µm), were measured using the 15N-tracer technique. At most of the stations, significantly higher potential maximum uptake rates of ammonium than of nitrate were detected in the pico-nanophytoplankton, indicating that small phytoplankton possess a relatively superior capacity to take up ammonium. By contrast, comparing the potential maximum uptake rate for nitrate between microphytoplankton and pico-nanophytoplankton showed that microphytoplankton exhibit a higher capacity for nitrate uptake as a nitrogen source compared to pico-nanophytoplankton. However, repressed uptake rates of ammonium and nitrate in microphytoplankton were sometimes found at the coastal station even when ambient nitrate concentrations remained high. Metatranscriptomic analysis of nitrogen transporter genes in microphytoplankton suggests that most diatoms utilize regenerated ammonium before nitrate to maintain their populations at the end of blooms. Metatranscriptomic approaches identify the transcriptional responses of dominant diatoms to explain how diatoms regulate their nitrogen transporter genes to cope with environmental changes in natural assemblages.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3