Increased temperatures impact the reproduction of localized estuarine kelp populations more than salinity or invasive species

Author:

Korabik AR1,Dias SM1,Grisby GV2,Grosholz ED1

Affiliation:

1. Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA

2. Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA

Abstract

Estuarine habitats regularly experience large variations in abiotic conditions such as temperature and salinity; however, under climate change and the increasing threat of invasive species, the pressure from both abiotic and biotic stresses has been increasing. Several studies have investigated the interactions of the adult stages of macroalgae; however, there is little understanding of how microscopic stages of Macrocystis pyrifera and Sargassum muticum interact or how climate change may influence this interaction. Our research considers the effects of climate-driven changes in temperature and salinity and their interactions with S. muticum on the growth and survival of M. pyrifera gametophytes from Tomales Bay, CA, USA. Using kelp culturing experiments, we tested (1) how different salinities and temperatures impact early life stages M. pyrifera from different sources within Tomales Bay, (2) how the presence of invasive S. muticum propagules affect M. pyrifera gametophyte development, and (3) how the combined effects of salinity, temperature, and S. muticum presence affect M. pyrifera early life stages. Our results suggest that M. pyrifera may be able to adapt to local conditions like salinity; however, higher temperatures from a changing climate and the presence of competitors from biological invasions act additively, but not interactively, to negatively impact the early life stages of kelp. By determining how foundation species respond to various abiotic and biotic stressors, we can better predict how these species will perform in a changing environment and how they will contribute to overall ecosystem resilience.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3