Effects of elevated pCO2 on bioenergetics and disease susceptibility in Pacific herring Clupea pallasii

Author:

Murray CS12,Gregg JL3,Mackenzie AH3,Jayasekera HT3,Hall S3,Klinger T1,Hershberger PK3

Affiliation:

1. School of Marine and Environmental Affairs and Washington Ocean Acidification Center, University of Washington, Seattle, WA 98105, USA

2. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

3. U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, Nordland, WA 98358, USA

Abstract

Ocean acidification can affect the immune responses of fish, but effects on pathogen susceptibility remain uncertain. Pacific herring Clupea pallasii were reared from hatch under 3 CO2 partial pressure (pCO2) treatments (ambient, ∼650 µatm; intermediate, ∼1500 µatm; high, ∼3000 µatm) through metamorphosis (98 d) to evaluate the effects of ocean acidification on bioenergetics and susceptibility to an endemic viral disease. Mortality from viral hemorrhagic septicemia (VHS) was comparable between herring reared under ambient and intermediate pCO2 (all vulnerability testing at ambient pCO2). By contrast, fish reared under high pCO2 experienced significantly higher rates of VHS mortality, and the condition factor of survivors was significantly lower than in the other pCO2 treatments. However, the prevalence of infection among survivors was not influenced by pCO2 treatment. Pre-flexion larval development was not affected by elevated pCO2, as growth rate, energy use, and feeding activity were comparable across treatments. Similarly, long-term growth (14 wk) was not affected by chronic exposure to elevated pCO2. Herring reared under both elevated pCO2 treatments showed an average reduction in swimming speed; however, wide intra-treatment variability rendered the effect nonsignificant. This study demonstrates that the VHS susceptibility and bioenergetics of larval and post-metamorphic Pacific herring are not affected by near-future ocean acidification predicted for coastal systems of the North Pacific. However, increased susceptibility to VHS in fish reared under 3000 µatm pCO2 indicates potential health and fitness consequences from extreme acidification.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3