Estimating a thermal constant of spawning to explain spawning time of Pacific herring Clupea pallasii across space and time

Author:

Ferreira ASA12,Neuheimer AB1

Affiliation:

1. Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000 Aarhus, Denmark

2. Department of Offshore Wind Environment, DHI A/S, Åbogade 15, 8200 Aarhus, Denmark

Abstract

Explaining variation in life history phenology requires us to disentangle environmental-dependent variability from that caused by adaptive change across time and space. Here, we offer thermal time models (models measuring time in temperature units) as tools to understand the spawning dynamics of small pelagic fish, such as Pacific herring Clupea pallasii. We hypothesised that thermal time explains the annual timing of spawning of Pacific herring across space and time. By testing this hypothesis, we identified developmental constants (thermal constants of spawning) that can be used to make spawning time predictions. We examined spatio-temporal changes in Pacific herring spawning time over a 69 yr period (1941-2010) across 6 regions off British Columbia (BC), Canada. We estimated the degree-days (DD, °C-days) from the onset of gonadal maturation to spawning by combining spawning time estimates with distribution-specific temperature estimates. We then fitted models to explore how DD to spawning can be used to explain observed spawning time patterns across space and time and identified temperature-independent sources of variability (e.g. adaptive differences among regions, spawner size). We found that, even though Pacific herring often spawned ∼5 d later with each increasing degree in latitude, the average thermal time in DD to spawning was ∼1700°C-days. We also found that DD to spawning explains linear variation in spawning time across years for some regions of the BC Pacific herring. Thermal time models can aid in predictions of environmental responses and forecasts of life-history phenology in a changing climate.

Publisher

Inter-Research Science Center

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small pelagic fish: new frontiers in ecological research;Marine Ecology Progress Series;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3