Climate change adaptation cost and residual damage to global crop production

Author:

Iizumi T1,Shen Z1,Furuya J2,Koizumi T3,Furuhashi G3,Kim W1,Nishimori M1

Affiliation:

1. Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8604, Japan

2. Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan

3. Policy Research Institute, Ministry of Agriculture, Forestry and Fisheries, Chiyoda-ku, Tokyo 100-0013, Japan

Abstract

Adaptation will be essential in many sectors, including agriculture, as a certain level of warming is anticipated even after substantial climate mitigation. However, global adaptation costs and adaptation limits in agriculture are understudied. Here, we estimate the global adaptation cost and residual damage (climate change impacts after adaptation) for maize, rice, wheat and soybean using a global gridded crop model and empirical production cost models. Producers require additional expenditures under climate change to produce the same crop yields that would be achieved without climate change, and this difference is defined as the adaptation cost. On a decadal mean basis, the undiscounted global cost of climate change (adaptation cost plus residual damage) for the crops are projected to increase with warming from 63 US$ billion (B) at 1.5°C to $80 B at 2°C and to $128 B at 3°C per year. The adaptation cost gradually increases in absolute terms, but the share decreases from 84% of the cost of climate change ($53 B) at 1.5°C to 76% ($61 B) at 2°C and to 61% ($8 B) at 3°C. The residual damage increases from 16% ($10 B) at 1.5°C to 24% ($19 B) at 2°C and to 39% ($50 B) at 3°C. Once maintaining yields becomes difficult due to the biological limits of crops or decreased profitability, producers can no longer bear adaptation costs, and residual damages increase. Our estimates offer a basis to identify the gap between global adaptation needs and the funds available for adaptation.

Publisher

Inter-Research Science Center

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3