Interactions between bivalve filter feeding and oceanographic forcing drive the fluxes of organic matter and nutrients at an estuarine-coastal interface

Author:

O’Connell-Milne SA1,Wing SR1,Suanda SH1,Udy JA1,Durante LM1,Salmond NH1,Wing LC1

Affiliation:

1. Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand, 9054

Abstract

Fluxes of nutrients and organic matter between estuaries and the open coast comprise an important component of ecosystem connectivity. Nevertheless, relatively little is known about how oceanographic processes, for example onshore retention of water in the coastal boundary layer, interact with major sinks for particulate organic matter such as bivalve filter feeding within inlets and estuaries. To investigate this interaction, total fluxes of water, nutrients (NH4, NOx and PO4) and chlorophyll a between Waitati Inlet on the wave-exposed coast of the South Island, New Zealand, and the coastal ocean were quantified over 40 tidal cycles. We found declines in total flux of phytoplankton and increases in flux of NH4 between flood and ebb tides. Net declines in phytoplankton biomass followed a Type II functional response curve, consistent with consumption by the large biomass of filter feeding bivalves within the inlet; however, an asymptote was not reached for the highest concentrations, indicating that feeding was likely limited by exposure time rather than concentration of food relative to biomass. An information-theoretic framework was then used to infer the most likely combination of environmental conditions influencing total fluxes of phytoplankton into the inlet. Onshore wind stress, wave transport and salinity explained 90% of the variation in flux of phytoplankton entering the inlet on flood tides. These results highlight the importance of the interaction between oceanographic forcing and bivalve filter feeding in modulating material dynamics and connectivity between estuaries and the coastal ocean.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3