Fitness consequences of hybridization between wild Newfoundland and farmed European and North American Atlantic salmon

Author:

Islam SS1,Wringe BF2,Conway CM1,Bradbury IR13,Fleming IA1

Affiliation:

1. Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St John’s, NL A1C 5S7, Canada

2. Salmon Section, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada

3. Salmonids Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 East White Hills Road, St John’s, NL A1C 5X, Canada

Abstract

Selection due to multi-generational domestication and genetically distinct origins raises concerns about potential fitness consequences of hybridization between farmed and wild Atlantic salmon. In Newfoundland (NF), Canada, the aquaculture industry uses the North American (NA) Saint John River strain, though site-specific permission has been granted to farm a European origin (EO) strain. We used complementary experiments to investigate differences in (1) dominance status and (2) growth and survival in allopatry (NF wild fish) versus sympatry (NF wild fish with NA/EO farmed individuals and related F1 hybrids) in contrasting tank and semi-natural stream environments. NA farmed salmon were more dominant than NF wild individuals, with hybrids being intermediate in expression and not differing from wild fish. EO farmed salmon also tended to dominate NF wild individuals, but not significantly. Competition with farmed fish and hybrids did not affect the growth of wild fish in sympatry versus allopatry in the tank environment. However, that was not the case in one instance in the stream environment where wild fish in sympatry with NA farmed fish and hybrids outgrew those in allopatry. Within sympatric treatments, both EO and NA farmed salmon outgrew wild individuals in the tank environment, but not always in the stream environment (exception: NA farmed). Hybrids tended to display intermediate growth performance relative to farmed and wild fish in both environments. Survival did not differ among cross types in either environment. These findings suggest that irrespective of distinct origins, both EO and NA farmed salmon displayed greater dominance and growth than NF wild salmon in the tank environment. However, in the stream environment, competition imposed by NA farmed fish and related hybrids on wild fish appeared less than that imposed by the EO strain and related hybrids, as evident in growth performance. Findings thus provide valuable insight into the effects of hybridization and, consequently, fitness-related trait differences among divergent EO and NA farmed, NF wild, and F1 hybrid populations of importance for the conservation and management of Atlantic salmon.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3