Fissure Formation in Rice During Conventional and Microwave Drying
Author:
Bruce Rebecca M.,Atungulu Griffiths G.,Bautista Rustico C.
Abstract
Highlights
Rice fissuring and breakage have a negative impact on milling quality and market value.
Fissure formation during microwave drying may be a combination of different phenomena.
The phenomena include the buildup of high internal temperatures and pressures in the kernel and stresses generated from a higher heat flux of liquid at high microwave intensities.
Abstract. Rice fissuring and breakage have negative economic impacts on rice processing. Many advances in multi-pass conventional rice drying technologies have not been successful in completely preventing rice fissure formation. Thankfully, novel drying technologies such as the 915 MHz industrial microwave have been shown to have a great potential for rice drying and may reduce rice fissuring (or increase head rice yield) due to the volumetric heating property of microwaves. This review assessed the mechanism of fissure formation in conventionally and microwave-dried grains to provide recommendations for managing fissure formation during the drying of freshly harvested paddy rice. Literature search indicates that fissure formation during microwave drying may be mainly a combination of different phenomena, such as the buildup of high internal temperature and pressure in the kernel, stresses generated from a higher flux of liquid at high microwave intensities, and other mechanisms that are yet to be discovered. Fissure formation in rice during conventional drying of the rice kernels can be explained using the glass transition phenomenon. Keywords: 915 MHz microwave, Fissures, Glass transition Phenomenon, Rice, Volumetric heating.
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Subject
Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献