Wind Tunnels and Their Uses to Study Variables Affecting Precision Applications of Agricultural Sprays

Author:

Womac Alvin Ray,Ozkan Erdal,Zhu Heping,Kochendorfer John,Jeon Hongyoung,Eswarachandra Nataraj

Abstract

Highlights Wind tunnels were extensively used to study precision applications of agricultural sprays. Use of wind tunnels significantly contributed to the broad-reaching impact of precision applications. Wind tunnels provide controlled conditions to study a plethora of wide ranging spray variables. Abstract.The objective of this study was to review publications that were representative of wind tunnels and their uses to study variables affecting precision applications of agricultural sprays. Precision application involved the deliberate engineering of sprayers for accurate formation and dispersal of droplets and sprays to enhance spray deposits on targeted crop, foliage, or pest for increased agricultural production with reduced adverse effects to neighboring ecology and the environment. Categorical themes of wind tunnel uses were (1) spray atomization, (2) adjuvant effects, (3) spray drift, (4) spray, air movement, crop foliage interactions, (5) UAV applications, (6) airflow around sprayer, and (7) spray test methods and collections. A discovery was that nozzle design had more impact on droplet size than spray formulation, which emphasized the importance of spray nozzle selection for atomization, and that air induction (AI) venturi nozzles consistently provided reduced spray drift potential. On occasion, some adjuvants marketed as drift reduction agents acted in an opposite manner and decreased droplet size. Wind tunnel use for spray drift had the broadest range of variables studied among conceptual applications and included various nozzles, boom height, product active ingredients, adjuvants, and other variables. Deposits decreased in foliage from upper, middle, to lower foliage heights and decreased with increased wind speed. Low wind turbulence in the canopy did not contribute to deposition. Foliage deposition depended more on droplet size and local ambient winds. Canopy porosity limited the droplet size to less than 100 µm for contribution to deposits internal to the foliage. Wind tunnel use for UAV applications was mostly focused on spray drift for UAV variables such as rotor configurations and payload for mounted or tethered UAV. An ultimate recommendation was to use AI nozzles, reduce application speed, and to use a suitable adjuvant – which was similar to other applications. Contrasting results for the impact of airflow around sprays were reported for vortices around fan spray discharge of a nozzle versus a 4-nozzle boom study that found no differences in velocity and turbulence fields due to the presence or no presence of spray discharge. Spray test methods and collections determined in wind tunnels primarily focused on collection efficiencies for a wide range of spray collectors. Collection efficiencies varied with collector and droplet size. Keywords: Keywords.,Boom sprayer,Droplet size,Droplet trajectory,Nozzle classification,Spray deposit,Spray drift,Spray nozzles.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3