Abstract
Objectives:An experimental study was conducted to investigate the membrane filtration characteristics of mixed liquor in methanogenic reactor to extend solid retention time (SRT) in food waste anaerobic digestion system.Methods:On the basis of the particle size distribution (0.5~700 µm) of the methanogenic mixed liquor, three grade membranes (MF, UF, NF) were tested in a stirred cell filtration and a plate type module. Furthermore foulants of membrane, especially UF, was investigated by SEM-EDS, FTIR, SEC.Results and Discussion:As a result UF membrane was selected for stable filtration of the liquor in terms of flux (2.51 L/m<sup>2</sup>・h・bar) and the flux recovery (100%) as well as filtration resistance (Total 7.15.E+13 m<sup>-1</sup>). Average flux was 18 L/m<sup>2</sup>・h・bar for the selected UF membrane in cross flow filtration using a flat plate module. The filtration results showed that membrane fouling was caused by gel and cake layer formed on the membrane surface and 90% of the initial flux could be recovered by physical washing. It was identified that major fouling causing materials were byproducts of carbohydrate and protein decomposition, and small amount of inorganic substance detected on the membrane surface were salt and struvite like materials.Conclusions:Based on the membrane filtration characteristics analyzed from the study, the UF membrane coupled anaerobic digestion is feasible to be applied as a novel food waste treatment system for SRT extension of the methanogenic reactor.
Funder
Changwon National University
Publisher
Korean Society of Environmental Engineering