Author:
Choi Yongjun,Lee Younggeun,Shin Kwanghee,Park Youngkyu,Lee Sangho
Abstract
The reverse osmosis (RO) technology is currently the leading desalination method. However, until recently, application of RO technology on a large scale has been primarily limited by membrane fouling. The mechanism of fouling is complex, which is not well understood in full-scale plants. Although many studies about modeling and prediction of fouling have been done, in most cases, the experimental data set of lab or pilot scale systems, which may not show fouling characteristics well in full-scale systems were used. In this study, both artificial neural network (ANN) model and tree model (TM) was evaluated to analyze long-term performance of full scale reverse osmosis desalination plant. The results of application of the ANN and TM indicated high correlation coefficients between the measured and simulated output variables. However, it is not easy to use ANN for the full scale plant operation because the final model is not expressed as a form of mathematical functions. TM has advantages over ANN because the model can be obtained as forms of simple function and it showed reasonably high <i>R</i><sup>2</sup>. Therefore, TM is shown to be more adequate than ANN for developing models in which the full-scale RO plant data is considered as an input.
Funder
Korea Environment Industry and Technology Institute
Ministry of Environment
Publisher
Korean Society of Environmental Engineering
Subject
Environmental Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献