A Multi-way Multi-task Learning Approach for Multinomial Logistic Regression

Author:

Hong Seung Hee,Alaeddini Adel

Abstract

SummaryObjectives: Whether they have been engineered for it or not, most healthcare systems experience a variety of unexpected events such as appointment miss-opportunities that can have significant impact on their revenue, cost and resource utilization. In this paper, a multi-way multi-task learning model based on multinomial logistic regression is proposed to jointly predict the occurrence of different types of miss-opportunities at multiple clinics.Methods: An extension of L 1/L 2 regulariza- tion is proposed to enable transfer of information among various types of miss-opportunities as well as different clinics. A proximal algorithm is developed to transform the convex but non-smooth likelihood function of the multi-way multi-task learning model into a convex and smooth optimization problem solvable using gradient descent algorithm.Results: A dataset of real attendance records of patients at four different clinics of a VA medical center is used to verify the performance of the proposed multi-task learning approach. Additionally, a simulation study, investigating more general data situations is provided to highlight the specific aspects of the proposed approach. Various individual and integrated multinomial logistic regression models with/without LASSO penalty along with a number of other common classification algorithms are fitted and compared against the proposed multi-way multi-task learning approach. Fivefold cross validation is used to estimate comparing models parameters and their predictive accuracy. The multi-way multi-task learning framework enables the proposed approach to achieve a considerable rate of parameter shrinkage and superior prediction accuracy across various types of miss-opportunities and clinics.Conclusions: The proposed approach provides an integrated structure to effectively transfer knowledge among different miss-opportunities and clinics to reduce model size, increase estimation efficacy, and more importantly improve predictions results. The proposed framework can be effectively applied to medical centers with multiple clinics, especially those suffering from information scarcity on some type of disruptions and/or clinics.

Funder

National Institutes of Health

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3