EVALUATION OF MECHANOBIOLOGICAL POTENTIAL OF 3D-PRINTED PLA BONE TISSUE SCAFFOLDS WITH DIFFERENT PORE ARCHITECTURES AND POROSITY RATIOS

Author:

Şenaysoy Safa1ORCID,Lekesiz Hüseyin1ORCID

Affiliation:

1. BURSA TEKNİK ÜNİVERSİTESİ

Abstract

Lattice structures are widely used in bone tissue scaffold designs due to interconnected porous structures that mimic the natural extracellular matrix (ECM) to treat large bone defects. This study investigated the mechanical behavior of scaffolds with different pore architectures and porosity ratios using experimental and numerical methods. In addition, mechanobiological potentials of scaffolds were evaluated in terms of the specific energy absorption and the specific surface area. Three different geometries were created by varying the combination of vertical, horizontal, and diagonal struts to evaluate the geometric factor and 50%, 62.5, and 75% porosity ratios are examined as potential permeabilities. Compression tests were performed to calculate stiffness values and energy absorptions of the scaffolds. Finite element simulations were used to obtain stiffness values of scaffolds. The specific energy absorptions of scaffolds were calculated under 4 N compressive load as a representative of potential body loads. According to the results, it was found that pore architectures and porosity ratios had crucial effects on stiffness values, energy absorption levels, specific energy absorption, and specific surface area which may lead to significant differences in bone remodeling. The highest specific energy absorption was observed in the scaffolds designed with only diagonal struts with 75% porosity. The highest specific surface area was observed in the scaffolds designed with the combination of vertical, horizontal, and diagonal struts with 75% porosity.

Funder

Türkiye Bilimsel ve Teknik Araştırma Kurumu

Publisher

International Journal of 3D Printing Technologies and Digital Industry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3