Affiliation:
1. "Babes-Bolyai University, Faculty of Economics and Business Administration, Department of Statistics-Forecasts-Mathematics, Teodor Mihali Street, No. 58-60, 400591 Cluj-Napoca, Romania e-mail: darius.filip@econ.ubbcluj.ro"
2. "Babes-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kogalniceanu Street, 400084 Cluj-Napoca, Romania e-mail: iarus@math.ubbcluj.ro"
Abstract
"In this paper we give conditions in which the integral equation
$$x(t)=\displaystyle\int_a^c K(t,s,x(s))ds+\int_a^t H(t,s,x(s))ds+g(t),\ t\in [a,b],$$
where $a<c<b$, $K\in C([a,b]\times [a,c]\times \mathbb{B},\mathbb{B})$, $H\in C([a,b]\times [a,b]\times \mathbb{B},\mathbb{B})$, $g\in C([a,b],\mathbb{B})$, with $\mathbb{B}$ a (real or complex) Banach space, has a unique solution in $C([a,b],\mathbb{B})$. An iterative algorithm for this equation is also given."
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献