A generic approach to soil–structure interaction considering the effects of soil heterogeneity

Author:

Breysse D.1,Niandou H.1,Elachachi S.1,Houy L.1

Affiliation:

1. Centre de Developpement des Geosciences Appliques, Université Bordeaux 1 Talence, France

Abstract

The longitudinal variation of soil properties has a major influence for many types of structure, including pavements, buried pipes, raft foundations and railways, as it induces stresses and/or displacements that cannot be predicted when assuming soil homogeneity. A set of simple numerical models has been developed to describe how soil–structure interaction can be influenced by soil variability. These models include: (a) a description of the soil spatial variability, within the frame of geostatistics, where the correlation length of soil properties is the main parameter; and (b) a mechanical description of the soil–structure interaction, which depends on the structure resting on the ground. There are some differences between a (more or less) rigid raft on piles, a set of buried pipes with (more or less) flexible connections and a hyperstatic beam, but the basic principles of mechanics are similar in all these cases. Several very general conclusion are drawn. (a) Soil heterogeneity induces effects (differential settlements, bending moments, stresses and possible cracking) that cannot be predicted if homogeneity is assumed. (b) The magnitude of the induced stresses depends on three factors: the magnitude of the soil variability (i.e. its coefficient of variation); a soil–structure stiffness ratio (in some cases, where the mechanics are more complex, one can consider two stiffness ratios, as in buried pipes for example, when one has to account for the flexibility both of the pipes and of the connections); a soil–structure length ratio, which combines the soil fluctuation scale and a structural characteristic length (distance between supports, buried pipe length, etc). In all cases, a worst value, corresponding to the value leading (from a statistical point of view) to the (statistically) largest effects in the structure, can be found. The principal benefit of such an approach is to provide some new approaches for better considering phenomena such as the geometrical irregularities in the longitudinal profile of pavements or during the control of soil compaction of sewer trench filling. This kind of approach can also give experts new tools for better calibration of safety in soil–structure interaction problems, when the soil variability is an influential parameter. Some practical conclusions are drawn in this direction.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference19 articles.

1. Alén C. On probability in geotechnics: random calculation models exemplified on slope stability analysis and ground–superstructure interaction. PhD thesis, 1998, Chalmers University, Sweden.

2. How to Manage the Spatial Variability of Natural Soils

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3