Shear-induced changes in smooth geomembrane surface topography at different ambient temperatures

Author:

Frost J. D.1,Karademir T.2

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA, Telephone: +1 404 8942280; Telefax: +1 404 8942281;

2. Department of Civil Engineering, Istanbul Bilgi University, Istanbul 34060, Turkey, Telephone: +90 533 3113598; Telefax: +90 212 6253086;(corresponding author)

Abstract

The shear strength of particulate material–smooth geomembrane interfaces results predominantly from ploughing and/or sliding of the particles at the interface. The relative contribution of particle sliding and ploughing for a given smooth geomembrane surface is principally a function of relative material hardness, particle angularity, and normal stress. The relative material hardness is ambient temperature dependent since the geomembrane is polymer based. When ploughing occurs at any temperature, the geomembrane surface wears, resulting in altered surface topography and different interface strength. This paper summarises the results of a study that quantified changes in the surface roughness of geomembranes as a function of ambient temperature, normal stress, and particle angularity. Surface roughness measurements were made on both virgin and post-shear smooth geomembrane specimens using a stylus profilometer to quantify the extent of wear resulting from shearing against different counterface materials at different temperatures under different normal stresses. Increased ambient temperature and particle angularity significantly increased the geomembrane surface roughness and provided quantitative insight into the wear mechanisms at granular material–smooth geomembrane interfaces.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3