Study of protective coatings and their optimization using a plasma spray technique

Author:

Xu Ming-San1,Jean Ming-Der1

Affiliation:

1. School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou, China

Abstract

This study reports the use of second-order function on the basis of Taguchi method for plasma-based spray processes to enhance the surface wear resistance of zirconia ceramic coatings. The L18 orthogonal array with eight control factors is used, and the antiwear properties of the deposits are implemented. Small granules are distributed evenly and closely in the fully melted coatings, while surface features show porous structures, cavities, macropores and unmelted zirconium dioxide particles in the partially melted coatings. A dense texture in the coatings is found, which provides good wear resistance, and the polynomial model for the surface wear-resistant properties is constructed. The results of the present study show that the proposed quadratic model, based on orthogonal array design, can obtain the conditions for process optimization and predict wear volume losses to yield desired results. These results provide useful information for the control of wear volume losses for plasma-sprayed coatings and ensure good wear-resistant properties.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3