Unsupervised deep-learning-powered anomaly detection for instrumented infrastructure

Author:

Mikhailova Aleksandra1ORCID,Adams Niall M12ORCID,Hallsworth Christopher A1,Lau F Din-Houn13ORCID,Jones Daniel N4

Affiliation:

1. Department of Mathematics, Imperial College of Science, Technology and Medicine, London, UK

2. Data Science Institute, Imperial College of Science, Technology and Medicine, London, UK

3. Lloyd’s Register Foundation Programme on Data-Centric Engineering, The Alan Turing Institute, London, UK

4. Mathematical Institute, University of Oxford, Oxford, UK

Abstract

Deep learning methods have recently shown great success in numerous fields, including finance, healthcare, linguistics, robotics and even cybersports. Unsupervised learning methods identify the dominant patterns of variability that shape a data set. Such patterns may correspond to well-understood processes, previously unknown clusters or anomalies. This paper presents a case study where a state-of-the-art family of unsupervised deep learning models called variational autoencoder (VAE) is applied to data accrued from a network of fibre-optic sensors installed within a composite steel–concrete half-through railway bridge. The goals were (a) to characterise automatically the behaviour of the bridge based on sensor measurements and, (b) based on this characterisation, to determine when a train passes across a bridge. Based on the VAE model, an algorithm is presented to identify automatically the ‘train event’ points in an unsupervised setting. Two architectures for the VAE model are compared with commonly used baselines. The architecture tailored for modelling sequential data is shown to outperform other methods considered, on both seen and unseen data. No special hyperparameter optimisation is required. This study illustrates how state-of-the-art deep learning methods can be applied to a civil infrastructure engineering problem without directly modelling the physics of the objects or performing tedious hyperparameter optimisation.

Publisher

Thomas Telford Ltd.

Subject

General Health Professions

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep neural network for damage detection in Infante Dom Henrique bridge using multi-sensor data;Structural Health Monitoring;2024-03-22

2. Unsupervised Outlier Detection Mechanism for Tea Traceability Data;IEEE Access;2022

3. Editorial;Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction;2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3