Reactive powder concrete reinforced by nanoparticles

Author:

Long Guangcheng1,Shi Ye1,Ma Kunlin1,Xie Youjun1

Affiliation:

1. Civil Engineering Materials Research Institute, School of Civil Engineering, Central South University, Changsha City, Hunan Province, People's Republic of China

Abstract

The influences of four nanoparticles of nanosilica (SiO2), nano-calcium carbonate (CaCO3), nano-aluminium oxide (Al2O3) and nano-iron oxide (Fe2O3) on workability, hydration, pore structure and mechanical strength of reactive powder concrete (RPC) are investigated by macro/microscopic methods. The aim of this study is to provide an essential basis for exploiting new-generation cementitious materials with ultra-high strength and super-long service life by employing modern nano-modification technology. The results indicate that addition of low-dosage nanoparticles to RPC shows a remarkable influence on the mechanical strength, hydration and pore structure compared to the ordinary cement system with a relatively high water/cement ratio. The compactness and mechanical strength of RPC can be greatly improved by incorporating nanoparticles. The promotive ratio of flexural and compressive strength of RPC is up to 30%. The elevated temperature further promotes the effect of nanoparticles on the strength of RPC. The seeding effect of nanoparticles on hydration of cement and the nano-size filling role are strengthened in the RPC system.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3