Crack-based analysis of concrete with brittle reinforcement

Author:

Stratford T. J.1,Burgoyne C. J.2

Affiliation:

1. Maunsell House 160 Croydon Road, Beckenham, Kent, BR3 4DE, UK

2. University of Cambridge, Engineering Department Trumpington St., Cambridge, CB2 1PZ, UK

Abstract

Brittle reinforcement (such as fibre-reinforced plastic) is being developed as an alternative to traditional steel reinforcement. The lack of ductility in a brittle-reinforced beam means that there is very little potential for stress redistribution, and the lower-bound theorem of plasticity (which allows many of the assumptions made in steel-reinforced concrete analysis) cannot be applied. Analysis of brittle-reinforced concrete must be based on a detailed examination of compatibility requirements within a beam, of which the cracks form an important part. A crack-based model is developed in this article, based on compatibility requirements where reinforcement crosses a crack, and compatibility in the compression-zone concrete. The analysis incorporates dowel-rupture of the reinforcement, and the reduced strength of a corner of a stirrup. It highlights the need for further research into flexure-shear of the compression zone, dowel-splitting, and local failure of the concrete. The crack-based model is used to illustrate the importance of compatibility in both the flexural and shear analysis of brittle reinforced concrete. In particular, the current proposals for shear design (which assume pseudo-plastic reinforcement) are examined, and contrasted with compatibility requirements within the beam.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

Reference23 articles.

1. Stratford T. J. The shear of concrete with elastic FRP reinforcement. PhD thesis, 2000, Department of Engineering, University of Cambridge, UK.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3