Prediction of Escherichia coli concentration from wetting of beach sand using machine learning

Author:

Hasan Md Syam1,Nunez Alma2,Nosonovsky Michael1,Silva Marcia R2

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin–Milwaukee, Milwaukee, WI, USA

2. Water Technology Accelerator, University of Wisconsin–Milwaukee, Milwaukee, WI, USA

Abstract

The presence of Escherichia coli in beach sand is directly related to public health outcomes. The physicochemical and wetting properties of sand influence the survival and proliferation of these indicator bacteria. This study is aimed at predicting E. coli concentrations using some of these properties, including the zeta potential, moisture content, Brunauer–Emmett–Teller (BET) surface area, BET pore radius, state of sand, processing temperature and water contact angle of beach sand. For this, the authors developed five machine learning regression models – namely, artificial neural network, support vector machine, gradient boosting machine, random forest and k-nearest neighbors. ANN outperformed other models in predicting E. coli concentrations. In the data-driven analysis, the state of sand, processing temperature and the contact angle representing the wettability of the sand are identified as the most crucial parameters in predicting E. coli concentrations.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Surface Innovations;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3