A micromechanical model for estimating the shear modulus and damping ratio of loose sands under low stresses: application to a Mars regolith simulant

Author:

Caicedo Bernardo1,Chaparro M. J.1,Castillo Betancourt J. P.12,Cabrera M. A.3,Delage P.2,LognonnÉ PH.4,Banerdt B.5

Affiliation:

1. Universidad de los Andes, Bogota, Colombia.

2. Ecole des Ponts ParisTech, Lab. Navier-CERMES, CNRS, UGE, Marne la Vallée, France.

3. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands.

4. Université Paris-Cité, Institut de Physique du Globe, CNRS, Paris, France.

5. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.

Abstract

The dynamic properties of loose sands under low stresses have been poorly investigated because of the higher order of magnitude of stress levels in terrestrial geotechnical structures. However, low densities and low stresses prevail in the sandy surface deposits of some other rocky planets, making low-stress conditions relevant for extra-terrestrial soil mechanics. This is the case for Mars, on the surface of which a seismometer has been placed during the InSight mission. In this context, a dynamic shear rheometer was used to measure the shear modulus and damping ratio of a Martian regolith simulant under very low stresses to improve the interpretation of the InSight dataset on surface materials. This paper also revisits the grain contact stiffness and the overall modulus of a random packing of identical spheres, based on the Hertz–Mindlin contact theory. A micromechanical model accounting for the effects of both grain roughness and slipping in the soil degradation curve is proposed. The results of the model show a good agreement with experimental data, capturing the non-linear transition from low to high shear strains. The model hence provides a new framework for a better understanding of the behaviour of granular materials in low-gravity (extra-terrestrial) conditions.

Publisher

Emerald

Reference52 articles.

1. Effect of Particle Shape on the Mechanical Behavior of Natural Sands

2. Andria-Ntoanina, I. (2011). Caractérisation dynamique de sables de référence en laboratoire- application à la réponse sismique de massifs sableux en centrifugeuse. PhD thesis, Ecole des Ponts ParisTech, Champs-sur-Marne, France.

3. Seismic velocities and Poisson’s ratio of shallow unconsolidated sands

4. A Compact Model for Spherical Rough Contacts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3