Twin-tunnelling-induced changes to clay stiffness

Author:

Divall S.1ORCID,Goodey R. J.1ORCID,Stallebrass S. E.1ORCID

Affiliation:

1. City, University of London, London, UK.

Abstract

Tunnels used for transportation in urban environments are often constructed in pairs. Projects in which tunnels are constructed sequentially and within close proximity are referred to as ‘twin tunnelling’. Case studies and recent research indicate that the prediction of settlements for such schemes cannot be determined using existing simple methods derived from consideration of a single tunnel. To establish the reasons for the observed variation in settlements, a series of centrifuge tests was undertaken on various twin-tunnel arrangements in overconsolidated clay. The tests consisted of preformed cavities from which a specific quantity of supporting fluid could be drained, with precision, creating a predetermined magnitude of tunnelling volume loss. Data were obtained for surface and subsurface displacements, changes in pore-water pressure near the tunnels and the support pressure within the tunnels. The systematic use of cavity contraction models was found to be an informative method of explaining the observations. Use of an elastic–perfectly plastic cavity contraction model coupled with observations from the experiments enabled the shear stiffness of the clay around the tunnel to be described. Further analysis demonstrated a reduction in shear stiffness of the soil prior to and during the second tunnel excavation, explaining the increase in volume loss observed in that event.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3