Biocementation of soft soil by carbonate precipitate and polymeric saccharide secretion

Author:

Rao Sudhakar M1ORCID,Sukumar Reshma1,Joshua Rita Evelyne2,Mogili Nitish Venkateswarlu3

Affiliation:

1. Department of Civil Engineering, Indian Institute of Science, Bengaluru, India

2. Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, India

3. Ad Hoc Faculty, Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, India

Abstract

This study utilised native denitrifiers of cattle manure to oxidise its organic matter and induce calcium carbonate cementation in a synthetic soft soil. The soft soil is prepared by remoulding a 50% kaolinite + 50% sand mix with ultra-pure water at 21% water content. The prepared specimen is classified as soft soil based on its low unconfined compression strength of 16 kPa. Extraneous calcium nitrate provides nitrate ions (electron acceptors) for the metabolism of denitrifying bacteria and calcium (Ca2+) ions for calcium carbonate formation. The facultative anaerobe community peaks and declines between 7 and 14 days. A small addition of magnesium oxide balances the pH reduction caused by acetic acid formation during microbial degradation of cattle manure. Acetic acid serves as a carbon substrate for the metabolic activities of denitrifying bacteria. The CO2 (gas) released during the metabolic activities of bacteria dissolves in water and forms bicarbonate ions. The anion combines with calcium ions in the alkaline environment to form calcium carbonate cement. In addition, the native extracellular polysaccharide (EPS)-secreting bacteria in cattle manure facilitate EPS bonding of soil aggregates. Soil structure, interfacial frictional resistance mobilised by cattle manure fibres, EPS bonding and calcium carbonate cementation enhance the compression strength of the stabilised specimen by 720%.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3