Nanostructured proteins for delivering drugs to diseased tissues

Author:

Gowtham Pemula1ORCID,Arumugam Vijaya Anand2ORCID,Harini Karthick1ORCID,Pallavi Pragya1ORCID,Thirumalai Anbazhagan1ORCID,Girigoswami Koyeli1ORCID,Girigoswami Agnishwar1ORCID

Affiliation:

1. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India

2. Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India

Abstract

During the last few years, nanostructures based on proteins have been playing a vital role in revolutionizing the nanomedicine era. Since protein nanoparticles are smaller and have a greater surface area, they retain a better capacity to interact with other molecules, resulting in carrying payloads efficiently to diseased tissues. Besides having attractive biocompatibility and biodegradability, protein nanoparticles can also be modified on their surfaces. For the fabrication of these nanostructures, there are several processes involved, including emulsification, desolvation, a combination of complex coacervation and electrospray. This can be achieved by using different proteins such as albumin, gelatin, elastin, gliadin, collagen, legumin and zein, as well as a combination of these proteins. It is possible to functionalize protein nanoparticles by altering their internal and external interfaces so that they can encapsulate drugs, release them in a controlled manner, disassemble them systematically and target tumors. This review highlights the physicochemical properties and engineering of several proteins to nano-dimensions used to deliver drugs to diseased tissues.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advantages of nanomedicine over the conventional treatment in Acute myeloid leukemia;Journal of Biomaterials Science, Polymer Edition;2023-12-19

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3