Experimental evaluation of ultimate bearing capacity of the cutting edge of an open caisson

Author:

Chavda Jitesh T.1ORCID,Mishra Soumyaranjan2ORCID,Dodagoudar Goudappa R.3

Affiliation:

1. PhD Research Scholar, Department of Civil Engineering, Computational Geomechanics Laboratory, Geotechnical Engineering Division, IIT Madras, Chennai, India (corresponding author: )

2. Graduate Research Scholar, ARC-ITTC for Advanced Technologies in Rail Track Infrastructure, University of Wollongong, New South Wales, Australia

3. Professor, Department of Civil Engineering, Computational Geomechanics Laboratory, Geotechnical Engineering Division, IIT Madras, Chennai, India

Abstract

Open caissons are sunk into the ground by their own weight. A cutting edge of the caisson having a tapered inner face on loading – that is, raising of the steining – results in bearing failure by displacing the soil which is in contact with the cutting edge. The bearing capacity of the cutting edge and the soil flow mechanism depend on the configuration of the cutting edge, sinking depth and soil type. This paper presents the results of a series of 1g model tests, which investigate the effect of varying tapered angles of the cutting edge on the penetration resistance of the open caisson. The vertical failure load and corresponding vertical bearing capacity factor, N′γ, and the soil flow mechanism around the cutting edge are investigated. The soil flow mechanism and the influence of surcharge formed at the top level of the cutting edge due to advancement of the caisson in the ground are examined using the image-based deformation measurement technique. The results highlight that the cutting angle of the cutting edge and sinking depth play important roles in the load–penetration response and soil flow mechanism.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3