Chitosan-coated liposomes of Carrisa spinarum extract: synthesis, analysis and anti-pneumococcal potency

Author:

Rubaka Clarence1,Gathirwa Jeremiah Waweru2,Malebo Hamisi M3,Swai Hulda1,Sibuyi Nicole Remaliah Samantha4,Hilonga Askwar1,Dube Admire5

Affiliation:

1. Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania, Global Health and Biomedical Sciences, Arusha, Tanzania

2. Kenya Medical Research Institute, Center for Traditional Medicine and Drug Research, Nairobi, Kenya

3. UNESCO, National Commission of the United Republic of Tanzania, Dar-es-salaam, Tanzania

4. DSI/Mintek Nanotechnology Innovation Centre – Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa

5. Infectious Diseases Nanomedicine Laboratory, Faculty of Natural Sciences, Department of Pharmaceutical Sciences, University of the Western CapeCape Town, South Africa

Abstract

In the present study, a chitosan (CS)-coated liposome (LipCsP-Chitosan) nanocarrier was fabricated for the delivery of Carissa spinarum (CsP) polyphenols to improve bioavailability and anti-pneumococcal potential against Klebsiella pneumoniae. LipCsP-Chitosan was synthesized by the ion gelation method and characterized by using a Malvern zetasizer and Fourier Transform Infrared (FTIR); CsP encapsulation and release kinetics were investigated. Anti-pneumococcal activity of the nanoformulations was accessed by agar-well diffusion and microdilution assays. LipCsP-chitosan exhibited a hydrodynamic size and zeta potential of 365.22 ± 0.70 nm and +39.30 ± 0.61 mV, respectively. CsP had an encapsulation efficiency of 81.5%. FTIR analysis revealed the interaction of the liposomes with chitosan and the CsP. A biphasic CsP release profile followed by a sustained release pattern was observed. LiPCsP-Chitosan presented a higher bioaccessibility of polyphenols in the simulated gastric phase (74.1% ± 1.3) than in the simulated intestinal phase (63.32% ± 1.00). LipCsP-chitosan had a relative inhibition zone diameter of 84.33% ± 2.51 when compared to CsP. At minimum inhibition concentration of 31.25 mg/mL, LipCsP-Chitosan reduced the viability of Klebsiella pneumoniae by 57.45% ± 3.76 after 24 h. The results obtained from the current study offer a new approach to the utilization of LipCsP-Chitosan as nanocarriers for candidate anti-pneumococcal agents.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3