Voice Biomarkers for Parkinson's Disease Prediction Using Machine Learning Models with Improved Feature Reduction Techniques

Author:

Chintalapudi NaliniORCID, ,Dhulipalla Venkata RaoORCID,Battineni GopiORCID,Rucco CiroORCID,Amenta Francesco, , , ,

Abstract

As a chronic and life-threatening disease, Parkinson’s disease (PD) causes people to become rigid and inactive and have shaky voices. There is an argument that current PD detection techniques are ineffective due to their high latency and low accuracy. To enhance the accuracy of PD identification, voice recordings were used as biomarkers in conjunction with the synthetic minority oversampling technique (SMOTE). Three machine learning (ML) models namely support vector machine (SVM), K-nearest neighbors (KNN), and random forest (RF) were adopted to calculate the prediction accuracy. By applying an unsupervised dimensional reduction method, the generated model eliminates redundant data and speeds up training and testing. Model performance is estimated with three parameters, including accuracy, F1 score, and area under the curve (AUC) values. Experimental outcomes suggested that the RF model outperforms other models with 97.4% of classification accuracy. This type of research aims to analyze patient voice recordings to determine the disease severity.

Publisher

BON VIEW PUBLISHING PTE

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A precise grape yield prediction method based on a modified DCNN model;Computers and Electronics in Agriculture;2024-10

2. Feature Selection Techniques Applied to Voice-based Prediction of Parkinson's Disease;2024 Fifteenth International Conference on Ubiquitous and Future Networks (ICUFN);2024-07-02

3. Three novel cost-sensitive machine learning models for urban growth modelling;Geocarto International;2024-01

4. Voice-Based Classification of Parkinson’s Disease Using Machine Learning: An Extensive Study;Innovations in Sustainable Technologies and Computing;2024

5. Using Machine Learning to Unveil Early Signs of Parkinson’s Disease: A Review;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3