Synthesis of efficient gene delivery systems by grafting pegylated alkylcarboxylate chains to PAMAM dendrimers: Evaluation of transfection efficiency and cytotoxicity in cancerous and mesenchymal stem cells

Author:

Ayatollahi Sara1,Hashemi Maryam2,Kazemi Oskuee Reza3,Salmasi Zahra1,Mokhtarzadeh Ahad14,Alibolandi Mona5,Abnous Khalil1,Ramezani Mohammad1

Affiliation:

1. Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2. Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3. Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

4. School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran

5. Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

The applications of polyamidoamine (PAMAM) dendrimers have attracted much attention in biomedicine specially non-viral gene delivery because of thier unique characteristics including hyperbranching, multivalency, and well-defined uniform globular three-dimensional structures. In the current study, in order to enhance the transfection efficiency and reduce the cytotoxicity of PAMAMs, bromoalkylcarboxylates with different chain length (2-bromoacetic, 6-bromohexanoic, 10-bromodecanoic and 16-bromohexadecanoic acids) were covalently conjugated with 10% and 30% of primary amines of generation 4 and 5 (G4 and G5) of PAMAM dendrimers to increase the hydrophobicity of the carrier. At the next stage, the alkylcarboxylate-PAMAMs were pegylaed to further modify the PAMAM structures for biological applications. Obtained results demonstrated that the prepared PAMAM derivatives had particle size around 140 nm with net-positive surface charge. None of the prepared PAMAM-based non-viral vactors exhibited significant hemolytic activity and also cytotoxicity. Meanwhile decahexanoate–PAMAM G4 [G4(16C-10%)] and decanoate–PAMAM G4 conjugated to polyethylene glycol (PEG) (G4[(10C-30%)(10C-PEG)]) showed highest transfection efficiency in murine neuroblastoma (Neuro-2a) cell line, interestingly only the latter had improved transfection efficiency in mesenchymal stem cells (MSCs). This study proved the potential utility of alkylcarboxylate-grafted PAMAM dendrimers (G4 and G5) with or without PEG modification for efficient gene transfer into cancerous cells as well as MSCs.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3