Reduced Protein Adsorption on Novel Phospholipid Polymers

Author:

Ishihara Kazuhiko1,Iwasaki Yasuhiko2

Affiliation:

1. Department of Materials Science, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2. Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, 2-3-10, Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

Abstract

We have synthesized phospholipid polymers containing 2-methacryloyloxyethyl phosphorylcholine (MPC) units as novel blood compatible polymers and have evaluated their interactions with blood components. It was found that in the absence of anticoagulants, blood clotting was delayed and blood cell adhesion and activation were effectively prevented on the MPC copolymer surface. A little amount of protein adsorbed on the MPC copolymer from human plasma was compared with conventional polymers, and the amount was reduced with increasing MPC unit fraction. To clarify the reason for the little protein adsorption on the MPC copolymer, the water structure in the hydrated polymer was examined with attention to the free water fraction. Hydration of the polymers occurred when they were immersed in water. The thermal analysis of these hydrated polymers revealed that the free water fractions in the poly(MPC-co- n-butyl methacrylate(BMA)) and poly(MPC-co- n-dodecyl methacrylate) were significantly larger than those in the poly(2-hydroxyethyl methacrylate(HEMA)). The conformation of proteins adsorbed on poly(HEMA) changed considerably but that on poly(MPC-co-BMA) was almost the same as the native state. We concluded from these results that the proteins are hardly adsorbed and do not change their original conformation on the polymer surfaces which possess a high free water fraction such as phospholipid polymers.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3