The study of self-regulating α-TCP based composite by micro/nano scaled silk fibroin and α-CSH on physicochemical and biological properties of bone cement

Author:

Song Yaping1,Zhao Liqin12,Niu Baolong3,Zhao Hongyun1,Hu Yinchun12,Wei Yan12,Huang Di12,Wang Tongxin4,Lian Xiaojie12ORCID

Affiliation:

1. Department of Biomedical Engineering, Research Center for Nano-Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China

2. Shanxi key Laboratory of material strength and structure impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China

3. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China

4. College of Dentistry, Howard University, Washington, DC 20059, United State

Abstract

A novel self-hardening α-tricalcium phosphate (α-TCP) bone cement complexed with different content of α-calcium sulfate hemihydrate (α-CSH) and micrometer hydroxyapatite mineralized silk fibroin (HA-SF) using micro/SF as curing liquid has been investigated in this work, which was capable of tunable setting time, degradation, mechanical property and ability to anti-washout. After addition 0 ∼ 25% α-CSH to the α-TCP cement with SFFs as curing liquid, it shortened the setting time of the modified composite to 10 ∼ 30 min. Furthermore, the addition of SFFs improved the compressive strength of the composite from 5.41 MPa to 9.44 MPa. The composites with both Na2HPO4 and SFFs as curing liquid showed good anti-collapse performance. The weight loss ratio of bone cement was −0.18 ∼ 12.08% in 4 weeks when the content of α-CSH in α-TCP/α-CSH was between 0 ∼ 25 wt%. During the degradation of α-CSH, the amorphous α-TCP were deposited as hydroxyapatite to formed a plate-like products on the surface of composite. Compared to the composite with Na2HPO4 solution as the curing liquid, alkaline phosphatase (ALP) activity of the composites using SFFs as curing liquid were maintained at high levels on the 14th day especially when the Ca/P ratio was 1.7. This study provides a theoretical basis for the regeneration of bone defects guided by bone cement materials.

Funder

Science and Technology Innovation Project of Colleges and Universities in Shanxi Provincial Education Department

The Key Research and Development Program of Shanxi Province, China

Joint Construction Agreement of Shanxi Provincial Key Laboratory for Functional Proteins

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province, China

Shanxi Scholarship Council of China

China Scholarship Council

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3