In Vitro Attachment of Staphylococcus Epidermidis to Surgical Sutures with and without Ag-Containing Bioactive Glass Coating

Author:

Pratten Jonathan1,Nazhat Showan N.2,Blaker Jonny J.3,Boccaccini Aldo R.4

Affiliation:

1. Division of Infection and Immunity, Eastman Dental Institute for Oral Health Care Sciences University College London, 256 Gray’s Inn Road London WC1X 8LD, UK

2. Division of Biomaterials and Tissue Engineering, Eastman Dental Institute for Oral Health Care Sciences, University College London, 256 Gray’s Inn Road, London WC1X 8LD, UK

3. Department of Materials and Centre for Tissue Engineering and Regenerative Medicine, Imperial College London Prince Consort Road London, SW7 2BP, UK

4. Department of Materials and Centre for Tissue Engineering and Regenerative Medicine, Imperial College London Prince Consort Road London, SW7 2BP, UK,

Abstract

The ability of a silver-doped bioactive glass (AgBG) coating to prevent bacterial colonization on surgical sutures was investigated in vitro. Bioactive glass powders, in the form of 45S5 Bioglass® and AgBG, were used to coat Mersilk® sutures using an optimized ‘in house’ slurry-dipping process. In vitro experiments were carried out using Staphylococcus epidermidis under both batch and flow conditions. While the traditional batch culture testing was used to determine the number of viable cells adhered to the surface, the flow-cell was used to visualize attachment and detachment over time. Under batch conditions of up to 180 min, statistically significant differences were observed in the colony forming units (CFU) per suture for both the coated and uncoated Mersilk® sutures. The results showed that the AgBG coating had the greatest effect on limiting bacterial attachment (8 102 CFU) when compared to the 45S5 Bioglass® coating (3.2 103 CFU) and the uncoated Mersilk® (1.2 104 CFU). Also under flow conditions differences were seen between the coated and uncoated sutures. Therefore, this preliminary study has demonstrated the quantification and visualization of bacterial attachment onto sutures in order to compare the antibacterial properties of Ag-containing bioactive glass coatings. The bactericidal properties imparted by Ag-containing glass open new opportunities for use of the composite sutures in wound healing and body wall repair.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3