Development and in functional study of a bi-specific sustained release drug-loaded nano-liposomes for hepatocellular carcinoma

Author:

Zhang Yufei1ORCID,Wu Xiaoxiong1,Zhu Hongfan1,Cong Yun1

Affiliation:

1. Shanghai Seventh People’s Hospital, Shanghai, China

Abstract

Background Lenvatinib (LEN) is a first-line therapy for patients with hepatocellular carcinoma (HCC), but has a larger adverse effect profile. In this study, we developed a liposome with drug-carrying function and magnetic resonance imaging (MRI) imaging function to investigate the targeted drug-carrying function and MRI tracing ability of liposome for HCC. Methods Magnetic nano-liposomes (MNL) with dual targeting function of epithelial cell adhesion molecule (EpCAM) and vimentin and capable of encapsulating LEN drugs were prepared. The characterization performance, drug loading efficiency and cytotoxicity of EpCAM/vimentin-LEN-MNL were tested, and the dual-targeting slow release drug loading function and MRI tracing ability were investigated in cellular and animal models. Results EpCAM/vimentin-LEN-MNL has a mean particle size of 218.37 ± 5.13 nm and a mean potential of 32.86 ± 4.62 mV, and is spherical in shape and can be uniformly dispersed in solution. The encapsulation rate was 92.66 ± 0.73% and the drug loading rate was 9.35 ± 0.16%. It has low cytotoxicity, can effectively inhibit HCC cell proliferation and promote HCC cell apoptosis, and has specific targeting function and MRI tracing ability for HCC cells. Conclusions In this study, an HCC-specific dual-targeted sustained-release drug delivery liposome with dual-targeted recognition and sensitive MRI tracer was successfully prepared, which provides an important scientific basis for maximizing the multiple effects of nano-carriers in tumor diagnosis and treatment.

Funder

Key Discipline Program of the Shanghai Pudong New Area Health Commission

Talents Training Program of the Seventh People’s Hospital, Shanghai University of Traditional Chinese Medicine

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3