Bioglass/collagen scaffolds combined with bone marrow stromal cells on bone healing in an experimental model in cranial defects in rats

Author:

Kido HW12,Gabbai-Armelin PR1ORCID,Magri AMP13,Fernandes KR1,Cruz MA1,Santana AF1,Caliari HM1,Parisi JR1ORCID,Avanzi IR1ORCID,Daguano JKMB4,Granito RN1,Fortulan CA5,Rennó ACM1

Affiliation:

1. Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil

2. Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil

3. University Center of the Guaxupé Educational Foundation (UNIFEG), Guaxupé, Brazil

4. Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil

5. Department of Mechanical Engineering, University of São Paulo (USP) São Carlos, São Carlos, Brazil

Abstract

This study aimed to develop bone regenerative therapeutic strategies, based on the addition of bone marrow stromal cells (BMSC) on bioglass/collagen (BG/COL) scaffolds. For this purpose, an in vivo study was conducted using tissue response of the BG/COL scaffolds combined with BMSC in a critical-size defects. Wistar rats were submitted to the surgical procedure to perform the cranial critical size bone defects and distributed in four groups (20 animals per group): Control Group (CG) (rats submitted to the cranial bone defect surgery without treatment), Bioglass Group (BG) (rats treated with BG), BG/COL Group (rats treated with BG/COL) and Bioglass/Collagen and BMSC Group (BG/COL/BMSC) (rats treated with BG/COL scaffolds enriched with BMSCs). Animals were euthanized 15 and 30 days after surgery. Scanning electron microscopy, histopathological and immunohistochemistry analysis were used. SEM analysis demonstrated that porous scaffolds were obtained, and Col fibers were successfully impregnated to BG matrices. The implantation of the BMSC on BG/COL based scaffolds was effective in stimulating newly bone formation and produced an increased immunoexpression of markers related to the bone repair. These results highlight the potential of BG/COL scaffolds and BMSCs to be used as a therapeutic approach for bone regeneration.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3