Oxygen-releasing nanofibers for breathable bone tissue engineering application

Author:

Khorshidi Sajedeh1,Karkhaneh Akbar1ORCID,Bonakdar Shahin2

Affiliation:

1. Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

2. National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran

Abstract

Oxygen is a vital molecule for cell and tissue processes. Electrospun fibers have been extensively used as drug loading carriers due to possibility of well control over drug release with modulating fiber properties. However, they have not been used as depots for oxygen release. In the present study, an oxygen-releasing nanofibrous scaffold has been developed by electrospinning of polylactic acid/nano-calcium peroxide suspension with different polylactic acid concentrations (6.5 and 13% w/v). The electrospun fibers with calcium peroxide cargo provided oxygen content of 30–94 mmHg in a period of 14 days which lies well within the oxygen level of osseous tissue. The release profile of 13% polylactic acid fibers was different with that of 6.5% fibers with respects to the initial content of released oxygen and the release rate. Not only did 13% fibers supply oxygen with a slower rate, but also they resulted in a lower burst release of oxygen. Cell culture studies in hypoxia corroborated that 13% polylactic acid fibers better preserve cell viability comparing 6.5% counterparts as perceived by MTT assay. Moreover, they endowed more favored milieu for adherence, arrangement and migration of mesenchymal stem cells as confirmed by microscopy images. The oxygen-releasing fibers equally affected alkaline phosphatase, osteocalcin, and calcium deposition by mesenchymal stem cells most likely due to interplay between topographical and metabolic cues offered by 6.5 and 13% formulations.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3