Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra

Author:

Beattie J. Renwick1ORCID,Esmonde-White Francis W. L.2

Affiliation:

1. J Renwick Beattie Consulting, Ballycastle, UK

2. Esmonde-White Technologies, Ann Arbor, MI, USA

Abstract

Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal component analysis is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning principal component analysis is not well understood by many applied analytical scientists and spectroscopists who use principal component analysis. The meaning of features identified through principal component analysis is often unclear. This manuscript traces the journey of the spectra themselves through the operations behind principal component analysis, with each step illustrated by simulated spectra. Principal component analysis relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of principal component analysis , such as the scores representing “concentration” or “weights". The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a principal component analysis model shows how to interpret application specific chemical meaning of the principal component analysis loadings and how to analyze scores. A critical benefit of principal component analysis is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3