Local Modeling by Adapting Source Calibration Models to Analyte Shifted Target Domain Samples Without Reference Values

Author:

Peper Jordan M.J.1,Kalivas John H.1ORCID

Affiliation:

1. Department of Chemistry, Idaho State University, Pocatello, Idaho, USA

Abstract

Spectral multivariate calibration aims to derive models characterizing mathematical relationships between sample analyte amounts and corresponding spectral responses. These models are effective at predicting target domain sample analyte amounts when target samples are within the analyte and spectral calibration source domain. Models fail when target samples shift (analyte amounts and/or spectra) from the original calibration domain model. A total recalibration solution requires acquisition of new sample reference values and spectra. However, obtaining enough reference values to distinguish the target domain may be challenging or expensive. A simpler approach adapts the original model to the target domain using target sample spectra without analyte reference values (unlabeled). Analytical chemists have developed several machine learning algorithms using unlabeled regression domain adaptation processes. Unfortunately, prediction accuracy declines for these methods depending on how much the target domain analyte distribution has shifted from the calibration distribution, and regression transfer learning methods are instead needed. Regression domain adaptation and transfer learning are often referred to as model updating in analytical chemistry, but regression domain adaptation only applies to spectral shifts. The regression transfer learning method presented in this paper named null augmentation regression constant analyte (NARCA) leverages unlabeled repeat spectra of a single target sample to update an original calibration model to the shifted target domain sample. With sample repeat spectra, the analyte amount can be assumed constant or nearly constant for NARCA and because models are formed for one sample, NARCA operates as a local modeling method. The performance of NARCA as a regression transfer learning method is evaluated using five near-infrared data sets.

Funder

National Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3