Recognition of the Presence of Bone Fractures Through Physicochemical Changes in Diagenetic Bone

Author:

Mein Caley1ORCID,Jones Jennifer R.1,Tennick Catherine1,Williams Anna1

Affiliation:

1. Research Centre for Field Archaeology and Forensic Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK

Abstract

Much research has focused on attempting to understand the drivers of bone diagenesis. However, this sensitive process is easily influenced by various factors, particularly the condition of the remains (i.e., whether they have been subjected to trauma). Previous research demonstrates that trauma can influence soft tissue decomposition, yet to date, no studies have looked at how bone fractures could affect bone diagenesis. To address this gap, two short timescale studies were conducted to investigate the influence of bone fractures on the physicochemical composition of disarticulated, partially fleshed animal remains. Disarticulated porcine bones were either fractured using blunt force or sharp force whilst fresh (producing perimortem damage), at 60 days producing postmortem damage (postmortem interval (PMI)), or left intact and left outside for up to 180 days post-fracture/240 days PMI. Retrieved bone sections were then analyzed for physicochemical differences using non-destructive methods, i.e., scanning electron microscopy energy dispersive spectroscopy and Fourier transform infrared spectroscopy with attenuated total reflectance. It was hypothesized that differences would be found in the physicochemical composition between the bones with fractures and those without after undergoing diagenetic change. The bone fractures significantly affected the elemental composition of bone over time, but structural composition initially remained stable. It was also possible to distinguish between perimortem and postmortem fractures using these two analytical techniques due to physicochemical differences. This research shows bone fractures can significantly alter the physicochemical composition of the bone during the postmortem period and have the potential to facilitate more accurate PMI estimations in forensic contexts.

Funder

Simon Beckett PhD Studentship from Hunter Publications Ltd

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference84 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3