New Insight into Titanium–Magnesium Ziegler–Natta Catalysts Using Photoluminescence Spectroscopy

Author:

Panchenko Valentina N.1,Kostyukov Anton I.2,Shabalin Anton Yu1ORCID,Paukshtis Evgeniy A.1,Glazneva Tatiana S.1ORCID,Kazarian Sergei G.13ORCID

Affiliation:

1. Boreskov Institute of Catalysis, Novosibirsk, Russia

2. Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia

3. Department of Chemical Engineering, Imperial College London, London, UK

Abstract

This paper presents the results of study of titanium–magnesium catalysts often used in polymerization processes, by photoluminescence spectroscopy (PL) in combination with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The interaction of dibutyl phthalate (DBP) with MgCl2was studied at DBPadded/Mg = 0–1 (mol/mol). The luminescence spectra with excitation at 278 nm and the excitation spectra for main emission bands were recorded. It was shown that DBP adsorbed on magnesium chloride, both in the form of donor–acceptor complexes (D+A) and in the form of molecular complexes. At DBPadded/Mg <0.15, the formation of D+Acomplexes occur predominantly; with an increase in DBPadded/Mg, the fraction of molecular complexes increases. Molecular complexes are destroyed during the treatment of the support by TiCl4. In this case, the structure of magnesium chloride is disordered and new coordination–unsaturated sites are formed. This work is a first attempt to apply PL spectroscopy in combination with DRIFTS spectroscopy to study titanium–magnesium Ziegler–Natta catalysts. The application of PL spectroscopy to such systems made it possible to detect interactions within and between donor molecules, which would be particularly challenging to achieve using other spectroscopic methods. Both spectroscopic methods provided crucial information about the existence of two types of complexes on the sample surface which is important for tuning the synthesis procedure of the titanium–magnesium catalysts for olefin polymerization.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3