Simultaneous Measurement of Two-Trace Two-Dimensional (2T2D) Near-Infrared (NIR) Asynchronous Correlation Spectra and Small-Angle X-ray Scattering (SAXS) to Characterize Thermally Aged Polypropylene (PP)

Author:

Shinzawa Hideyuki1ORCID,Togo Azusa1,Hagihara Hideaki1

Affiliation:

1. Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Abstract

In this study, a new system was developed to carry out simultaneous near-infrared (NIR) and small-angle X-ray scattering (SAXS) measurements. Aged polypropylene (PP) was examined with the NIR–SAXS system to demonstrate how it can be utilized to derive pertinent information about the polymer structure. Pairs of SAXS profiles and NIR spectra of PP in its initial state and after aging were measured to derive an in-depth understanding of the aging phenomenon. The SAXS profiles of the PP samples showed a clear shift of the SAXS peak to the lower q direction induced by the thermal aging, indicating an increase in the length of the long-period structure. Two-trace two-dimensional (2T2D) asynchronous correlation spectra derived from NIR spectra clearly revealed that the aging treatment leads to a substantial increase in the spectral intensity of the regularity bands representing the longer helix present in a folded lamellar structure. In other words, it suggests that the long helix structure is more abundantly present than the short helix structure in the aged PP than in the initial PP. By combining the information derived from the SAXS profiles and NIR spectra, the details of the aging-induced variation were clearly determined. Namely, aging causes additional crystallization of the PP by developing more helical structures, which involves an increase in the lamellar thickness as well as a decrease in the amorphous region. The growth of the rigid crystalline phase restricts the elastic deformation in the amorphous structure, which eventually induces the deterioration of PP by making the polymer hard but brittle. Such observation, in turn, implies that retarding or accelerating the crystallized structure of PP substantially works to control the progress of aging.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3