Near-Infrared Spectroscopy for Distinguishing Malignancy in Thyroid Nodules

Author:

Zufry Hendra12ORCID,Munawar Agus Arip3

Affiliation:

1. Division of Endocrinology, Metabolism, and Diabetes—Thyroid Center, Department of Internal Medicine, School of Medicine, Universitas Syiah Kuala/Dr Zainoel Abidin Hospita, Banda Aceh, Indonesia

2. Innovation and Research Center of Endocrinology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

3. Department of Agricultural Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia

Abstract

Thyroid nodules are common clinical entities, with a significant proportion being malignant. Early, accurate, and non-invasive tools to differentiate benign and malignant nodules can optimize patient management and reduce unnecessary surgery. This study aimed to evaluate the efficacy and accuracy of near-infrared spectroscopy (NIRS) in distinguishing benign from malignant thyroid nodules. A diffuse reflectance spectrum for a total of 20 thyroid nodule samples (10 samples as colloid goiter and 10 samples as thyroid cancer), were acquired in the wavelength range from 1000 to 2500 nm. Spectral data from NIRS were analyzed by means of principal component analysis (PCA), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) to classify and differentiate thyroid nodule samples. The present study found that NIRS effectively distinguished colloid goiter and thyroid cancer using the first two principal components (PCs), explaining 90% and 10% of the variance, respectively. QDA discrimination plot displayed a clear separation between colloid goiter and thyroid cancer with minimal overlap, aligning with reported 95% accuracy. Additionally, applying LDA to seven PCs from PCA achieved a 100% accuracy rate in classifying colloid goiter and thyroid cancer from near-infrared spectral data. In conclusion, NIRS offers a promising, non-invasive complementing diagnostic tool for differentiating benign from malignant thyroid nodules with high accuracy. Future work should integrate these results into predictive model development, emphasizing external validation, alternative performance metrics, and protecting against potential overfitting translation of a machine learning model to a clinical setting.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3